数字建模就是用数字的语言、方法去近似地刻画实际问题,而这种刻画的数字表述就是一个数字模型,其过程就是数字建模的过程。随着计算机技术的发展和数学的广泛应用,数字建模的作用日显。
三维模型重建已应用到很多方面,如远程购物、虚拟现实、人脸识别、文化遗产保护等。一个完整的三维模型重建系统包括以下五个模块:三维数据获取、距离图像的分割、距离图像的配准、几何建模、纹理建模。
对于本课题,建模的思路是,按照有限元的思想,将平面图案离散为网格,然后针对每个网格研究他们的数据变化。图案网格化的基本思想是将图案划分为离散网格,每一个网格作为一个小的图案单元。对于小网格,他变形成为三维曲面上的网格时可以堪称网格并没有发生折叠,弯曲变化,只是在角度上改变。这样把平面与曲面的变化转变为网格的角度变化,可以极大地简化数据处理。 包装物体的材料选用适当,与被包装的商品性能、用途和质量档次相匹配,并且加工工艺先进,事宜批量生产。质量塑料包装按需定制
对于塑料板料的图案变形问题,计算机模拟可以建立二维平面与三维制件之间的联系。以一条加强筋为例,由于分析需要网格大小选择的是板料的厚度大小,网格密度比较大,用加强筋部一小部分作为演示。
在三维制件的模拟成型网格图上,企业可以设计出符合需要的图案。例如,红**域是团的某同**域,由于模拟中这些网格有***的ID标识,可以直接在二维平面模型中找到对应的区域。将图案按照RGB值进行划分,标识在**小单元——网格单元上,可以达到三维制件表面图案的变形问题。杯型件的测试数据表明,其精确度比较低可以达到87%。 自动化塑料包装工厂直销双泡壳包装的特点是需要高周波机将双泡壳封边,效率低、包装成本较高,但边缘整齐美观,产品外观***。
将相机记忆卡插入计算机后,即可用软件读取,然后依照软件操作步骤一步进行处理。对要研究的各部分变形网格的处理结果和误差分析如下。
1.三面正交角
这个分析结果不仅*只**三面正交的情况,其他多面相交的情况也与之类似。原始图像是经过软件处理后,还原成三维图像。为了处理方便和简化计算,只截取了三面相交处的一部分。先分析该部分的有效应变场。
从膜的上方到下方,应变随着变大,比较大应变发生的地方并没有处在三面的交点A的中心附近,沿着直线c往下,应变将达到比较大,红**域的应变很大,在,实际上网格的变形程度远远不止如此,因为前面的试验表明当应变超过50%之后,软件的结果误差很大。ASAME系统主要分析的是金属板材的应变,而金属板材的应变是不会达到这么大的,这也是塑料板料成型的一个特性,塑料板料相对于金属板料,除了弹性模量不同之外,其流动性更大,当然这是与塑料的分子结构有密切联系的。第三个面的加入,使得相交线a和b在靠近交点处的应变发生了变化,可以清晰看到蓝**域在块靠近交点a处产生了2个波谷。
通常,实际中采用板料成型网格测量技术得到的成型极限图。这需要运用网格变形分析法进行分析。网格变形分析是一种在板料成型前在其表面标记网格,然后经过加工,在终的制作上得到变形后的网格。这种网格变形的方法可以通过网格标识板料在成型过程中材料流动的趋势,对分析板料成型性能有着重要的意义。成型极限曲线的形状和位置与以下因素有着直接联系:板材的硬化指数n、塑性应变比r值、厚度、应变路径、应变梯度、应变速率和网格测量方法等。这些参数方法的改变,会对成型极限曲线有着较大的影响。
1.板材硬化指数n、塑性应变比r值的影响
硬化指数n值增加时,材料的强化效应增大,会提高应变分布的均匀性,因而使成型极限曲线提高。是根据拉伸失稳——M-k理论计算的结果。根据M-k理论计算,r值增大时,拉一拉区的极限应变值降低。但皮尔斯的试验结果显示,除了平面应变状态以外,r值对成型极限曲线影响不太,但可看出r值下降,极限应变值也下降。 吸塑包装采用吸塑工艺生产出塑料制品,并用相应的设备对产品进行封装的总称。
造成这两个区域变减小的原因是:塑料板料在成型前是平面的,成型时四周同时会向下弯曲拉伸,这就是导致在三面交角处造成材料的推积,在之后的拉伸中,这两处应变要比其他地方要小一些。
另一方面可以看出,同一高度上,相交线c上的点应变更大,结合薄膜在成型时的流动方向,不难知道,这是因为该处的薄膜需要同时向3个方向拉伸变形,其一是竖直向下(这是主要的拉伸方向),同时还要向两侧拉伸(次要拉伸方向)。所以针对多面相交的情况,要特别注意变形时的薄膜流动方向,来确定比较大应变发生在哪条相交线上及附近,以及整个薄膜应变变化趋势。
结合这一点和计算机模拟来设计膜上的图案,将使图案在成型后的效果更佳。现在来分析三面正交角的厚度应变场。厚度应变的分布与有效应变场的分布有些类似。 外销包装在具备运输包装、销售包装二大类的同时,包装必须要适应进口国或地区的特点及需要。淮安产品塑料包装咨询问价
生产部门为了方便记数、仓储、堆存、装卸和运输的需要,必须把单体的商品集中起来,装成大箱就是运输包装。质量塑料包装按需定制
塑料片材成型过程的模拟是一个非线性有限元计算和多物理场耦合的过程。本次采用非线性有限元模拟软件 ABAQUS 来进行模拟,选用 Mooney-Rivlin 模型进行显示计算。相对于 Standard 计算,Explicit 显示计算的好处在于,其材料模型允许材料失效,并且具有更强的接触功能,甚至能够解决**复杂的接触模拟。由于显示计算采用积分求解技术,具有条件稳定性,而且磁盘空间和内存占有量相对于 Standard要小很多。鉴于塑料片材成型过程的计算量巨大,又有超塑性变形其计算结果很容易不收敛,使得模拟失败,在 Explicit 中,这些问题都可以较好的解决。质量塑料包装按需定制